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Abstract

Glioblastoma multiforme (GBM) is the commonest primary malignant brain tumor

and has a remarkably weak prognosis. According to the aggressive form of GBM,

understanding the accurate molecular mechanism associated with GBM pathogen-

esis is essential. Growth differentiation factor 15 (GDF‐15) belongs to transforming

growth factor‐β superfamily with important roles to control biological processes. It

affects cancer growth and progression, drug resistance, and metastasis. It also can

promote stemness in many cancers, and also can stress reactions control, bone

generation, hematopoietic growth, adipose tissue performance, and body growth,

and contributes to cardiovascular disorders. The role GDF‐15 to develop and pro-

gress cancer is complicated and remains unclear. GDF‐15 possesses tumor sup-

pressor properties, as well as an oncogenic effect. GDF‐15 antitumorigenic and

protumorigenic impacts on tumor development are linked to the cancer type and

stage. However, the GDF‐15 signaling and mechanism have not yet been completely

identified because of no recognized cognate receptor.
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1 | INTRODUCTION

Glioblastoma multiforme (GBM) has been known as the commonest

primary malignant brain tumor and has a remarkably weak prognosis

and survival of 15 months (Ampie et al., 2015; Carlsson et al., 2014;

Razavi et al., 2016; Van Meir et al., 2010; Weathers & Gilbert, 2015).

GBM is capable of cell invasion to the neighboring brain parenchyma

(Basirjafari et al., 2020; Buckner et al., 2007). On the basis of the

World Health Organization (WHO) 2016 classification, GBM is

classified into isocitrate dehydrogenase (IDH) wild‐type (WT) GBM

(90%) and IDH mutants 1 and 2 (10%). IDH 1/2 mutation show a

better prognosis than the WT form (Carlsson et al., 2014; Razavi

et al., 2016; Van Meir et al., 2010; Weathers & Gilbert, 2015). The

primary GBM of the WT form can be observed in cases older than

55 years (Ohgaki & Kleihues, 2013). Younger ages are more likely to

have secondary GBM which is the mutant type (Ohgaki & Kleihues,

2013). Both primary and secondary GBMs have poor prognosis along

with vital genetic mutations affecting pathways, such as cellular

proliferation, invasion, survival, and angiogenesis. Each one has a

specific transcriptional pattern and recurrence of DNA copy number

aberrations (Furnari et al., 2007). Several markers have been men-

tioned for the primary GBMs tumors, such as epidermal growth

factor receptor (EGFR) amplification, mutations affecting phospha-

tase, tensin homolog (PTEN), and telomerase reverse transcriptase

promoter (Bush et al., 2017). Secondary GBMs exhibit mutations in

IDH 1/2, tumor protein 53 (p53), and alpha‐thalassemia/mental
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retardation syndrome X‐linked (Bush et al., 2017). Methylation

enhances the tumor cells’ susceptibility to alkylating drugs (Bush

et al., 2017). The signaling mechanism explaining the role of growth

differentiation factor 15 (GDF‐15) in hallmarks of cancer like an-

giogenesis, proliferation, stemness, drug resistance, and metastasis

has been studied (Vocka et al., 2018). According to the aggressive

form of GBM, identifying the accurate molecular mechanism asso-

ciated with GBM pathogenesis is essential. In this paper, we review

the effects of GDF‐15 protein on GBM that might provide a basis to

develop therapeutic approaches to prevent and treat GBM.

2 | GDF‐15: THE BASICS

GDF‐15 is a member of the transforming growth factor (TGF)‐β su-

perfamily in the branch of bone morphogenetic protein‐like group.

GDF‐15 can be found in the blood, but its levels are different

based on age and sex (Wesseling et al., 2020). Overexpression of the

GDF‐15 in illnesses, like advanced cancer, causes the anorexia/

cachexia syndrome. Neurons of area postrema (AP) and/or nucleus

tractus solitarii (NTS) are important to regulate food consumption

and body weight through GDF‐15 (Borner et al., 2017; Tsai et al.,

2014). GDF‐15 causes food avoidance and malaise as a peptide

(Patel et al., 2019). GDF‐15‐related vomiting and diseases in line with

the GDF‐15 function concept, as a pathophysiological signal, are

linked to the stimuli inducing sickness (Borner et al., 2020).

There is a link between C‐reactive protein and GDF‐15 with a

crucial role in endothelial inflammation pathogenesis (Y. Kim et al.,

2018). Moreover, upregulation of its expression after treatment with

different anticancer drugs, such as doxorubicin, nonsteroidal anti‐
inflammatory drugs (NSAIDs), carboplatin, genistein, and peroxisome

proliferator‐activated receptor‐γ (PPARγ) ligands has been reported

(Meier et al., 2015). p53, SP1, phosphatidylinositol 3‑kinase/protein
kinase B (PI3K/AKT) signaling, and early growth response‐1 (EGR‐1)
induce GDF‐15 transcription in different cancers (Eling et al., 2006). The

signaling strategy to explain the GDF‐15 effect in cancer symptoms,

such as stemness, angiogenesis, resistance to medication, proliferation,

and metastasis has been evaluated in different cancers involving insulin‐
like growth factor receptor 1, extracellular‐signal‐regulated kinase

(ERK), ERB signaling. GDF‐15 probably can be regarded as a point of

amalgamation for cancer symptoms (Modi et al., 2019).

Intracellular GDF‐15 exists predominantly in its proform. The

GDF‐15 active form is the dimer that is released mature. None-

theless, considering various biosynthesized types, as well as the

possibility of their interactions (binding partners), the mature dimer,

proforms, and propeptides of GDF‐15 are probably vital to modulate

the GDF‐15 biological effect (Wang et al., 2013). Sp1 transcription

factors modulate the GDF‐15 transcription by the GC box found

within −133 bp of the GDF‐15 promoter, while p53 sites are involved

in dietary compound‐related GDF‐15 expression (Baek et al., 2002;

P. X. Li et al., 2000).

Glial‐derived neurotrophic factor family receptor α‐like (GFRAL)

is a special receptor for GDF‐15 with expression in AP and NTS

neurons in both mice and humans, in this context, lack of the GFRAL

reduced food consumption and body weight (Mullican et al., 2017).

GFRAL knockdown in the AP and NTS caused an increase in body

weight and obesity in mice subjected to a diet high in fat (Tsai et al.,

2019). Also, activating other intracellular signaling pathways, such as

the mitogen‐activated protein kinase (MAPK) and EGFR/ErbB routes

can be triggered through GDF‐15 (K. K. Kim et al., 2008; Y. J. Park

et al., 2010).

GFRAL expression is carried out in hindbrain neurons (not per-

ipheral tissues), suggesting a central mechanism for regulation of

food consumption modulated by GDF‐15‐GFRAL. Obese mice were

not found with an elevation in energy expenditure caused by GDF‐
15, the antiobesity effects of the cytokine may be due to a decrease

in food intake (Yang et al., 2017). The GDF‐15 and GFRAL interaction

blockage using a monoclonal antibody inhibited the GDF‐15 meta-

bolic activities. Activation of GFRAL‐expressing by GDF‐15 in the AP

and NTS of the mouse brainstem activates neurons in the para-

brachial nucleus and central amygdala, as the “emergency circuit”

shaping feeding reaction to stressful situations. Tissue stress and

damage cause an elevation in GDF‐15 levels. A mechanistic base has

been reported for the non‐homeostatic control of neural circuitry

using a peripheral signal related to tissue injury and stress (Hsu et al.,

2017). GDF‐15 has various functions in its target tissues, such as

heart, kidney, brain, and tumors, with findings being inconsistent or

even contradictory (Emmerson et al., 2018).

3 | BIOLOGICAL FUNCTION OF GDF ‐15

The GDF‐15 gene has a high expression level in the placenta, as well

as adult prostate tissue where GDF‐15 exerts immunomodulatory

functions, and at lower concentrations, in other normal tissues, in-

cluding the liver, kidney, pancreas, and fetal brain (Fairlie et al., 1999;

Hromas et al., 1997; Lawton et al., 1997; Paralkar et al., 1998;

Segerer et al., 2012). GDF‐15 has different roles to control biological

processes. It is vital in cancer development rate and progression,

controlling stress reactions, bone generation, hematopoietic devel-

opment, and adipose tissue activity, and is contributed to cardio-

vascular disorders (Mimeault & Batra, 2010). GDF‐15 plays a role in

the pathogenesis and progression of several cancers (Bauskin et al.,

2006; Karan et al., 2003), and also cachexia (Brown et al., 2007;

Johnen et al., 2007; Tong et al., 2004; Wollert et al., 2007). GDF‐15
induction is done by many cellular stresses, like anoxia, compounds

damaging DNA and NSAIDs, regardless of p53 or hypoxia‐inducible
factor (HIF)‐1α (Albertoni et al., 2002; Baek et al., 2001; Kannan

et al., 2000; P. X. Li et al., 2000). It has been recently published that

GDF‐15 conveys somatic distress to the brain (Lockhart et al., 2020).

The in vitro data on human macrophages showed that GDF‐15
expression (at RNA and protein levels) was induced following treat-

ment with phorbol 12‐myristate 13‐acetate/12‐O‐tetradecanoylphorbol‐
13‐acetate and retinoic acid, which indicates the important role of

oxidative stress through the GDF‐15 induction (Fairlie et al., 1999;

Schober et al., 2001). Insofar is a phorbol ester stimulating superoxide
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anion generation in cultured microglial cells and is possibly linked to the

GDF‐15 induction (Colton et al., 1998; Schober et al., 2001). Collectively,

various mechanisms regulate GDF‐15; thus, GDF‐15 may be regarded as

a molecular target for cancer chemoprevention (Wang et al., 2013).

4 | ROLE OF GDF‐15 IN BRAIN
METABOLISM

GDF‐15 is synthesized in the choroid plexus and its release to cer-

ebrospinal fluid (CSF), where several signaling proteins can arrive at

targeted cells in the brain and spinal cord (Dixon et al., 1997).

Considering the expression sites and GDF‐15 as a neurotrophic

factor, it is secreted through plexus epithelial cells to the CSF;

therefore, the peptide is able to access putative targeted cells over a

long distance. In the brainstem, aminergic neurons have been shown

with in vitro and in vivo functions for GDF‐15 in the nervous system

(Strelau et al., 2000).

Expression and temporal dynamics of GDF‐15 in a cortical lesion

model undoubtedly indicate its crucial role in the brain tissue's early

response to damage. It should be assessed if an increase in GDF‐15
near the wound edges happens in microglia, macrophages, astro-

cytes, and endothelial cells. In lesioned brains, two sites are available,

where GDF‐15 is located in neuronal cells. First, dorsal thalamus

neurons, which are distant from the lesioned area, expressing GDF‐
15 messenger RNA (mRNA) 4 days following the cryogenic cortical

lesion, which can be regarded as a response of a neuron population

projecting to the lesioned site retrogradely. In the lesioned central

nervous system (CNS), GDF‐15 can possess anti‐inflammatory ac-

tivities that supplement the other superfamily members’ functions.

Finally, GDF‐15 localization of neurons in the lesion areas raises

questions concerning its pro‐ or antiapoptotic functions in neurons

(Schober et al., 2001). GDF‐15 is a trophic factor in different CNS

neuron classes and promotes their survival rates in vitro and in vivo

(Krieglstein et al., 1995). Concerning the response rate in RE2, the

GDF‐15 promoter shows a greater affinity for p53 in comparison

with p63/p73 (Klein et al., 2001; Osada et al., 2007).

GDF‐15 is protective against iron‐mediated cytotoxicity (Strelau

et al., 2000). GDF‐15 promotes the dopaminergic neurons' survival

rate, as well (Strelau et al., 2000). It is a strong neurotrophic factor to

develop lesioned aminergic neurons in vitro and in vivo, similar to the

neurotrophic factor derived from glial cells (Strelau et al., 2000).

GDF‐15 may be considered as an astrocyte‐originated activator of

astrocyte remodeling associated with the strengthening of tight

junctions at the blood–brain barrier (BBB; Malik et al., 2020).

5 | GDF‐15 PRESENCE IN CSF OF
PATIENTS WITH GLIOBLASTOMA

GDF‐15 is connected to the evolution of cancer both positively and

negatively depending upon the cellular state and environment. In

physiological conditions, GDF‐15 inhibits early tumor promotion.

However, its abnormal expression in advanced cancers causes pro-

liferation, invasion, metastasis, cancer stem cell formation, immune

escape, and a reduction in response to therapy (Fang et al., 2019).

Elevated GDF‐15 level was shown in the serum or tissues of patients

with cancer and its expression was correlated with poor prognosis. In

vitro and in vivo studies also corroborated a metastasis‐promoting

role for GDF‐15. However, in some studies, GDF‐15 was shown to

suppress the metastatic properties of cells (D. D. Liu & Mei, 2017;

Spanopoulou & Gkretsi, 2020). There are some studies that support

that GDF‐15 acts as an immune checkpoint and can be an emerging

target for cancer immunotherapy (Wischhusen et al., 2020). As a

biomarker, GDF‐15 can be used for the diagnosis and therapy of

extensive scope of cancers. But some basic functions of GDF‐15 are

unclear and complicated at the molecular level (Fang et al., 2019).

There is an association between high CSF levels of GDF‐15 and

glioblastoma. Also, GBM patients with high CSF GDF‐15 levels have

a shorter survival (Shnaper et al., 2009). Conversely, GDF‐15 plasma

levels did not show a significant change in the existence of in-

tracranial tumors. It is not clear that CSF levels of GDF‐15 are af-

fected by plasma levels, because of the BBB disruption in cases with

glioblastoma (Shnaper et al., 2009). Shnaper et al. (2009) reported no

increase in GDF‐15 CSF levels in GBM cases who received alkylating

agents than cases with measurements at the beginning of operation

(chemo naive); however, the patient groups showed different results

suggesting inflammatory cells as the main source of GDF‐15 in GBM,

in particular, macrophages as the main source. In accordance, an

immune gene expression signature is part of a classifier to differ-

entiate the glioma malignancy grade (Godard et al., 2003). CSF can

be used for repeatedly assessing response to treatment earlier than

imaging and is also useful to adapt to treatment accordingly (Shnaper

et al., 2009).

6 | EFFECT OF GDF ‐15 IN
GLIOBLASTOMA

Several researchers have noted that almost all gliomas express GDF‐
15 in vivo (Roth et al., 2010; Scrideli et al., 2008; Strelau et al., 2008).

However, some studies reported that glioblastoma cells are GDF‐15
negative in vivo (Shnaper et al., 2009). The role of GDF‐15 to develop

and progress cancer is complicated and has not yet been identified.

GDF‐15 possesses tumor suppressor activity, however, its oncogenic

activity has been found. The antitumorigenic and protumorigenic

impacts of GDF‐15 on tumor growth are linked to the cancer type

and stage (Table 1). An increase in GDF‐15 mRNA expression level

has been recorded through malignant progression to glioblastomas

(A. Li et al., 2009). The GDF‐15 expression levels have shown to be

upregulated in glioblastoma cells against cytotoxic stimuli, anti‐
inflammatory agents, PPARα agonists, and anticancer drugs, such as

etoposide, doxorubicin, and bexarotene during chemotherapy

treatment (Chiu et al., 2011; Heo et al., 2016; Jeansonne et al., 2013;

J. M. Kim et al., 2013; Mimeault & Batra, 2010; Yoshioka et al., 2008).

There are different genetic routes of primary and secondary GBMs
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resulting in glioma (usual phenotypic endpoint) with little overlap

(Kleihues et al., 2002). GDF‐15 protein expression makes primary

and secondary glioblastomas different, with the levels of GDF‐15
transcripts in secondary being higher than the primary glioblastoma

cells (Strelau et al., 2008). In the primary type, GDF‐15 im-

munoreactivity was particularly found in tumor cells, whereas it was

not found in blood vessels and perivascular spaces. On the contrary,

there is notable GDF‐15 immunoreactivity in the extracellular matrix

(ECM) of perivascular areas of two anaplastic astrocytomas (Grade

III) and a secondary glioblastoma (Grade IV), while tumor cells and

microglia were found negative for GDF‐15. Therefore, perhaps GDF‐
15 of secondary GBMs is almost found in the ECM. Interestingly,

there is a correlation between increased stromal storage of GDF‐15
in prostate tumors and a higher risk of maintaining disease‐free. It is
not clear whether the stromal store of proGDF‐15 in the ECM is

effective in secondary glioblastomas (Strelau et al., 2008). Concern-

ing secondary glioblastoma cell cultures, GDF‐15 in all WHO grades

has a high expression level; however, it cannot be related to the level

of malignancy. Therefore, GDF‐15 is not crucial to promote the

glioblastoma progress from less to a highly malignant phenotype

(Strelau et al., 2008).

In Baroni et al. (2018) experiment, although there was a specific

molecular profile, the altered pathways in the adult GBM (U343 cell

line) pediatric cell lines were different from pediatric GBM (KNS42

cell line). According to the cells’ clonogenic activity following GDF‐15
silencing and the obtained results, the knockdown reduced colony

generation in the KNS42 cells because the genes related to cell

viability and survival were downregulated; however, there were no

changes in the U343 cells (Baroni et al., 2018). Thus, there are dif-

ferences in high‐grade gliomas between pediatrics and adults. On the

basis of collaborative molecular assessments, various chromatin

regulation, developmental signaling pathways, and tumorigenesis

mechanisms have been noted (Jones & Baker, 2014). It should be

avoided to use the data resulted from investigations on adult glio-

blastomas in therapeutic methods (Baroni et al., 2018). More studies

should be done for clarifying the contradictory results on the

GDF‐15 expression in tumors, specifically in glioblastoma.

Methylating the distinct promoter sequences result in tran-

scriptional silencing of the GDF‐15 locus in gliomas, possibly leading

to tumor progression. Nonetheless, several tumors and cells have

been found with a high expression level of GDF‐15. Other tumors

have an unknown methylation state, which can because of no CpG

island methylation in GDF‐15‐overexpressing tumors. Future in-

vestigations should be carried out for clarifying the potential link to

CpG island methylation (Wang et al., 2013). The GDF‐15 promoter

area was found with poor methylation and hypermethylation in cells

TABLE 1 The GDF‐15 anti‐ and protumorigenic activities in GBM

Properties Findings References

Antitumorigenic properties Inducing apoptosis (induced by HDAC inhibitor) Yoshioka et al. (2008); Grunstein (1997);

Kouzarides (1999)

Activating p‐53 target genes Baek et al. (2001); Bootcov et al. (1997); Kannan et al.

(2000); P. X. Li et al. (2000)

Lower expression level in GBM cells compared with benign

glioma cells and healthy human astrocytes

Kadowaki et al. (2012)

Basal expression and promoter hypermethylation of GDF‐15,
reversely associating with tumor grading (in response to

staurosorine or TSA)

Wang et al. (2013); Kadowaki et al. (2012)

Upregulating in GBM cells, against cytotoxic stimuli; lower level

in primary GBM

Chiu et al. (2011); Heo et al. (2016); Jeansonne et al.

(2013); J. M. Kim et al. (2013); Mimeault and Batra

(2010); Yoshioka et al. (2008).

Tumor suppressor in early stages of tumor in (P53, GSK‐3B,
and EGR‐1 pathways)

Wang et al. (2013)

Protumorigenic properties Increased GDF‐15 in malignant progression to GBM related to

shorter survival

Shnaper et al. (2009)

Increased in secondary GBM compared to primary GBM

(especially in ECM)

Strelau et al. (2008)

Increasing cell migration and invasion Louca, Gkretsi, et al. (2019)

Inducing tumor formation by autocrine and paracrine

regulation of tumor cells

Codó et al. (2016).

Immunosuppressive cytokine that can protect the tumor

microenvironment from effector immune cells

Yoshimura and Muto (2011)

Abbreviations: ECM, extracellular matrix; EGR‐1, early growth response‐1; GBM, glioblastoma multiforme; GDF‐15, growth differentiation factor 15;

GSK‐3B, glycogen synthase kinase‐3B; HDAC, histone deacetylase; TSA, trichostatin A.
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with high and low GDF‐15 basal expression, respectively. In glio-

blastoma cells, the basal expression and promoter hypermethylation

of GDF‐15 is reversely associated with tumor grading, and methy-

lation of some promoter sequences (−53 and +55 CpG sites) causes

transcriptional silencing of the GDF‐15 locus in glioma and may play

an important role in tumor progression (Kadowaki et al., 2012).

There is a very low expression level of basal GDF‐15 in the tumors,

whereas there is a high level of promoter methylation (Kadowaki

et al., 2012). Regulation and silencing of the GDF‐15 in glioblastomas

are done with methylation (Kadowaki et al., 2012). The relationship

between hypermethylation and basal GDF‐15 expression has not yet

been identified in the human tumor specimens. In cells with GDF‐15
promoter methylation, clusters of DNA methylation are associated

with identified transcription factor‐binding sites involved in the basal

expression regulation (Kadowaki et al., 2012). A decrease in me-

thylation levels in tumors compared with cell lines indicates diversity

in cellularity, the signaling condition in vivo versus in culture. Also,

DNA methylation in cells represents an effective higher growth rate

in a culture that is not observed in tumors (Kadowaki et al., 2012;

Stone et al., 2004). Various transcriptional factors and post-

transcriptional methods regulate GDF‐15 expression, suggesting a

diverse regulation through antitumorigenic compounds. GDF‐15 is a

prominent downstream target of the p53 (Baek et al., 2002),

Egr‐137, and AKT/glycogen synthase kinase‐3b (GSK‐3b) routes

(Kadowaki et al., 2012; Yamaguchi et al., 2004).

The mentioned pathways have distinct areas in the −133 to fl55

region of the GDF‐15 promoter. Many transcription factors are

active on the GDF‐15 promoter. The Egr‐1 and Sp‐1 binding areas

are crucial regulation sites to increase GDF‐15 expression via COX

inhibitors, troglitazone, and trichostatin A (TSA). Besides, they are

important to regulate GDF‐15 basal expression (Baek & Eling, 2006;

Eling et al., 2006; Wang et al., 2011). Egr‐1/Sp‐1 regions have a high

methylation level in glioblastoma cells and primary oligoden-

droglioma specimens with low GDF‐15 basal expression (Kadowaki

et al., 2012). A high level of methylation was also reported in the F55

region near the p53 binding site (Kadowaki et al., 2012). Methylation

of the Egr‐1/SP‐1 region can decrease the basal expression of GDF‐
15 and prevent the increased expression following treatment with

staurosporine (SS) or TSA. SS caused an increase in GDF‐15 ex-

pression in T98G cells characterized by the GDF‐15 promoter with

poor methylation while treating U‐118 cells with a promoter char-

acterized by a high level of methylation caused no increase in GDF‐
15 expression (Kadowaki et al., 2012). Following removing the me-

thyl group after 5‐AZA‐dC therapy, SS elevated GDF‐15 expression

in the U‐118 cells (Kadowaki et al., 2012). SS caused an increase in

the Egr‐1 expression in T98G and U‐118 cells, but there is a need for

a transcription factor to elevate transcriptional properties of the SS,

and the attachment of Egr‐1 into the promoter region was stopped

on the methylated promoter in U‐118 cells approved through the

Chip test (Kadowaki et al., 2012). In glioma, silencing the basal ex-

pression and blockage of the drug‐related expression was done by

hypermethylation of the GDF‐15 promoter, which indicates that

gliomas are resistant against several drug therapies (Kadowaki et al.,

2012). More investigations should be done for determining the re-

sistance of GDF‐15 transgenic mice against the development of

glioblastoma and silencing GDF‐15 expression in other cancer types

by hypermethylation (Kadowaki et al., 2012).

7 | GDF ‐15 SIGNALING AND ITS
TARGETING ON GLIOMA CELLS

GDF‐15 is a new candidate for histone deacetylase (HDAC) in-

hibitors, which is vital to mediate the apoptosis against HDAC in-

hibitors in these glioblastoma cells (Yoshioka et al., 2008).

HDAC inhibitors impose their anticancer activities through

changing histone acetylation, leading to changes in the targeted

genes’ transcription/the transcriptional machinery components

(Yoshioka et al., 2008). They induce cell differentiation, arrest in the

cell cycle, as well as apoptosis in cancer cells (Grunstein, 1997;

Kouzarides, 1999). Also, HDAC inhibitors change apoptotic signaling

pathways, including Rb (Luo et al., 1998), PTEN (Pan et al., 2007),

tumor necrosis factor‐α (Y. H. Kim et al., 2004), p21 (Han et al., 2001;

Y. K. Kim et al., 2003; Omotehara et al., 2002), and p53 (Condorelli

et al., 2008; Habold et al., 2008; Roy & Tenniswood, 2007). Tran-

scriptional and posttranscriptional methods are involved in HDAC

inhibitors‐associated induction of GDF‐15. The effect of HDAC in-

hibitors on GDF‐15 expression may be imposed directly by altera-

tions in histone acetylation (Yoshioka et al., 2008). Sp‐1 and Egr‐1
are effective to induce GDF‐15 expression with HDAC inhibitors.

The COX inhibitor, sulindac sulfite, the PPARγ ligand, and troglita-

zone cause GDF‐15 expression in many human cells linked to the Sp‐
1/Egr‐1 region in the GDF‐15 promoter (Yoshioka et al., 2008).

Nonetheless, such a mechanism needs the MEK1/ERK1/2 pathway

(Baek et al., 2004). ERK1/2 pathway is not needed for HDAC

inhibitors‐associated GDF‐15 expression; thus, HDAC inhibitors can

indirectly up‐regulate GDF‐15 expression through changing histone

acetylation (Yoshioka et al., 2008). HDAC inhibitors induce the Egr‐1
and Sp‐1 expression, which then attaches into the SP‐1/Egr‐1 region

in the –133 to +41 bp of the GDF‐15 promoter increasing the GDF‐
15 mRNA and protein expression levels. Besides, HDAC inhibitors

cause an elevation in the GDF‐15 mRNA stability, leading to in-

creased protein expression. HDAC inhibitors increase histones

acetylation and GDF‐15 expression that causes alterations in chro-

matin structure, and consequently, changed gene expression. This is

a novel mechanism to regulate GDF‐15 (Yoshioka et al., 2008). In

GBM (except A172 cells), GDF‐15 is less expressed compared with

the low‐grade gliomas and normal human astrocytes (Yoshioka et al.,

2008). Therefore, the GDF‐15 gene is silenced by the malignant

transformation in malignant brain tumors. Briefly, GDF‐15 induction

by HDAC inhibitors is linked to HDAC inhibitors‐related apoptosis.

Such induction includes the transcriptional (by Sp‐1 and Egr‐1) and
posttranscriptional regulations. Effective data were provided to de-

velop optional combinational treatment approaches to be used in

malignant brain tumors using HDAC inhibitors (Yoshioka et al.,

2008). Also, GDF‐15 activates p53 (Baek et al., 2001; Bootcov et al.,
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1997; Kannan et al., 2000; P. X. Li et al., 2000). It has been shown

that GDF‐15 has tumor‐suppressing activity based on its effective-

ness as a p53‐target gene and the limited promoter hypermethyla-

tion in healthy tissues and cancer (Albertoni et al., 2002; Bauskin

et al., 2006; Shnaper et al., 2009). GDF‐15 caused p53‐ or p53‐
independent growth arrest and apoptosis (Albertoni et al., 2002).

P53 mutations have rarely been observed in primary glioblastoma

(<10%), whereas they are higher in secondary GBM (>65%) (Strelau

et al., 2008). However, GDF‐15 expression and p53 activation are

poorly correlated (Strelau et al., 2008). The p53 family proteins’ at-

tachment into DNA was defined through the sequence of quarter

sites that possibly correspond to binding to the molecules of a p53

tetramer (Cho et al., 1994). Two mismatches are available in the

majority of 30 quarter sites of RE2 in the residual resistivity ratio

(RRR) stretch and TBP‐associated factors (TAFs) in the core se-

quence that caused a low affinity for p63 and p73, leading to p53‐
specific activation. Transactivation of the response element is asso-

ciated with its sequence. Also, p53 produces a tetramer and attaches

to two repeats of RRRCWWGYYY at the DNA‐binding domain and

also to many components of the RNA polymerase II (RNA pol II)

complex, likes TAFII31, TAFII70, and TAF1, at the transactivation

domain for activating targeted gene transcription (Buschmann et al.,

2001; Inga et al., 2002; H. H. Li et al., 2004; Lu & Levine, 1995; Osada

et al., 2005, 2007). The p53 tetramer is kinked the DNA by binding to

distinct targeted regions causing an alteration in its three‐
dimensional structure that allows the correlation between p53 and

the RNA pol II complex that is needed for the transcription start

region (Balagurumoorthy et al., 2002, 1995; Nagaich, Appella, et al.,

1997; Nagaich et al., 1999; Nagaich, Zhurkin, et al., 1997; H. Zhou

et al., 2001). Accordingly, different factors, such as the binding affi-

nity for response element sequences, are effective in target gene

activation of p53 family members (Osada et al., 2007). Activating the

p53 pathway dramatically increases the GDF‐15 expression; but, p53

undergoes a mutation in nearly 35% of GBM patients (Yin et al.,

2005; Zanotto‐Filho et al., 2012), which can make glioblastoma cells

with p53 mutations resistant against medications associated with

p53 activity. MIC‐1 expression is subjected to upregulation by anoxia

regardless of the p53 state (as shown for p53‐null glioblastoma cell

LN‐Z308) (Albertoni et al., 2002). Upregulation of the GDF‐15 pro-

tein expression and release in anoxia was detected against oxygen

deprivation HIF‐1‐independently (Albertoni et al., 2002). It has been

shown that overexpression did not affect the GDF‐15 proliferation

level of 3M1, 3M2, and 3M11 cells in vitro, and it was the same as

the proliferation level of the parental cell and control pool, however,

it showed an increase in vivo (Albertoni et al., 2002). Codó et al.

(2016) did not observe the effect of hypoxic conditions on different

other glioma cell lines, which indicates that hypoxia cannot be con-

sidered as the main driver of GDF‐15 expression. NSAIDs increase

the expression of GDF‐15. There is some evidence that shows the

expression of GDF‐15 causes apoptosis in many cancer cells in vitro

(Baek et al., 2001; Eling et al., 2006; S. H. Lee et al., 2010; Shimizu

et al., 2013). The biochemical pathway related to NSAID‐caused
apoptosis does not need p53 induction and NSAID and p53

regulation of GDF‐15 expression are possibly happened by in-

dependent strategies (Piazza et al., 1997). The increased GDF‐15
expression with NSAIDs demonstrates the apoptotic impacts of

NSAIDs independent of COX in cultured cells. GDF‐15 over-

expression could induce apoptosis in some cell lines of glioblastoma

(U87 MG, U118 MG, U251 MG, and T98G), however, it cannot be

observed in some cells (like A172 and LN‐229 cells) (Z. Zhang et al.,

2014). Apoptosis has two pathways: the extrinsic and the intrinsic

pathways, started by the attachment of ligand of specific death re-

ceptors and started at mitochondria, respectively (Ganguly et al.,

2010). Caspase‐3 can be activated via upstream effector proteins,

such as caspase‐8 (extrinsic pathway) and caspase‐9 (intrinsic path-

way) (Xuejiao et al., 2013). Cleaved caspase‐3 and caspase‐9 are

increased following GDF‐15 overexpression, and GDF‐15‐related
apoptosis is stopped via Ac‐LEHD‐FMK (Z. Zhang et al., 2014). The

cytochrome c release, as well as alterations in ΔΨ, are impressive in

the intrinsic pathway. Bcl‐2 protein family is crucial to regulate the

mitochondrial apoptosis pathway (Fesik, 2005). GDF‐15 over-

expression reduced Bcl‐2 expression, enhanced Bax expression, in-

creased cytosolic cytochrome c level, and declined mitochondrial

membrane potential (ΔΨ). The mitochondrial apoptosis pathway is

associated with GDF‐15‐caused glioblastoma cell apoptosis (Z. Zhang

et al., 2014). There is no clear information regarding distinct re-

ceptors activated by the released GDF‐15. GDF‐15 mediates some

cellular reactions by stimulating TGF‐β receptors type I and II as well

as Smad proteins (Mimeault & Batra, 2010). GDF‐15 overexpression

activates PI3K/Akt and Smad2/3 signaling pathways in glioblastoma

cells and the GDF‐15‐associated apoptosis is increased by PI3K in-

hibitors and reduced via small interfering RNAs (siRNAs) to Smad2

and Smad3 (Naghizadeh et al., 2019; Z. Zhang et al., 2014). There-

fore, apoptosis resistance occurs by the loss of the Smad3 function

(Tarasewicz & Jeruss, 2012). Akt and sequesters unphosphorylated

Smad3 are directly interacted (in the cell membrane and cytoplasm),

indicating an improvement in survival by Akt kinase‐independently
(Conery et al., 2004; J. Li et al., 2013). Such interaction increased

GDF‐15‐associated Smad3 phosphorylation levels through PI3K in-

hibitors in glioblastoma cells. PI3K/Akt and Smad2/3 signaling

pathways have opposite impacts in glioblastoma cell apoptosis

caused by GDF‐15 (Z. Zhang et al., 2014). Also, no GDF‐15 inhibitory

effect on LN‐Z308 cell proliferation can result from the failure in the

TGF‐β//Smad signaling route (Albertoni et al., 2002). On the con-

trary, the glioblastoma cell line LN‐ Z308 ability for forming tumors

in nude mice was fully stopped after GDF‐15 complementary DNA

ectopic expression, whereas maintained in an assay with the vector

control. Smad4 as an important factor in the TGF‐β/GDF‐15 signaling

pathway exerts a key antiangiogenic activity (Schwarte‐Waldhoff

et al., 2000). Therefore, GDF‐15, similar to TGF‐β indirectly affects

the regulation of Smad4 pathway‐regulated angiogenesis (Schwarte‐
Waldhoff et al., 2000). At higher levels, TGF‐β prevents angiogenesis

via a decrease in the vascular endothelial growth factor receptor‐2
(FLK‐1) expression in vascular endothelial cells (Mandriota et al.,

1996; Pepper et al., 1993). The identification of GDF‐15 (an anti-

tumorigenic gene regulated by NSAIDs) can lead to developing novel
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drugs to treat human cancers (Baek et al., 2001). The p53 areas are

crucial to regulate GDF‐15 expression and induce GDF‐15 expres-

sion by food products, such as DADS and resveratrol (Baek et al.,

2002; Bottone et al., 2002). Hence, the −128 to −53 site as well as

the fl55 area of the GDF‐15 promoter possibly silence the tumor

suppressor gene in tumorigenesis of glioma (Kadowaki et al., 2012).

Furthermore, the proteasome inhibitor MG132 and bortezomib (as a

new class of antitumorigenic drugs), can stimulate GDF‐15 expres-

sion in glioblastoma cells, leading to cell death and prevented cell

growth, through the early phase of glioma tumorigenesis like other

TGF‐β superfamily members (Jennings & Pietenpol, 1998; Shimizu

et al., 2013; Zanotto‐Filho et al., 2012). Transient induction of p38

MAPK offers a survival signal and its persistent activation can induce

cell death (Weng et al., 2005). MG132‐induced GDF‐15 expression

relies on the p38 MAPK pathway that involves transcriptional and

posttranscriptional strategies (Shimizu et al., 2013). Posttranscrip-

tional stabilization of GDF‐15 mRNA is the main cause to enhance

GDF‐15 protein expression. It has been suggested that GDF‐15 ex-

pression forms a new pathway for the anti‐glioblastoma effect of

proteasome inhibitors (Shimizu et al., 2013). Overall, the GDF‐15/
p38 MAPK signaling pathway is possibly vital for the MG132 anti-

glioblastoma effect. MG132‐related GDF‐15 is crucial caused by

stabilizing GDF‐15 mRNA concerning the role of proteasome in-

hibitors in glioblastoma cells. MG132 enhances GDF‐15 expression

by the posttranscriptional method; therefore, hypermethylated cell

lines, like A172 still react to MG132. Glioblastoma with hy-

permethylation of the GDF‐15 promoter is vulnerable to the

MG132‐regulated GDF‐15 induction effects (Shimizu et al., 2013).

Nonetheless, there is no study on the transgenic mouse to determine

whether GDF‐15 suppresses glioblastoma growth, but in some oth-

ers, it has been shown that GDF‐15 possesses a tumor suppressor

effect (Baek et al., 2006). Further studies should be conducted for

addressing the clear dichotomous role of GDF‐15 in tumorigenesis. It

can be concluded that being aware of the induction of GDF‐15
through the p38 MAPK pathway can result in promising and ad-

vanced treatment methods to apply proteasome inhibitors in glio-

blastoma cells (Shimizu et al., 2013).

Downregulation of GDF‐15 is done in aggressive glioma cells

(SW1088 and A172) versus nonaggressive ones (H4), with the ex-

pression completely different from Ras suppressor‐1 (RSU‐1) ex-

pression in glioma cells. Therefore, GDF‐15 increases invasion of the

H4 cells and suppresses it in A172 by changing in particularly

interesting new cysteine‐histidine rich protein (PINCH1), RhoA, and

MMP‐13 expression, all regulating cell migration, and invasion

(Louca, Gkretsi, et al., 2019). RSU‐1 suppresses migration and inva-

sion in H4 and enhances them in A172 by regulating the PINCH1,

RhoA, and MMP‐13 expression (Louca, Gkretsi, et al., 2019). PINCH1

directly interacts with RSU‐1 and perhaps, any alteration in RSU‐1
expression can affect PINCH1 (Dougherty et al., 2005). GDF‐15
silencing in H4 cells with a low level of RSU‐1 expression and inva-

siveness can downregulate RSU‐1 with no effect on invasion and

gene expression (Louca, Gkretsi, et al., 2019). However, GDF‐15
silencing in highly invasive A172 cells reduces RSU‐1 expression that

is consistent with the cell invasion model, as well as the results ob-

tained after direct RSU‐1 silencing (Louca, Gkretsi, et al., 2019).

Glioma cell invasion is managed by RSU‐1 differently considering the

aggressiveness of the cells (Louca, Stylianou, et al., 2019). These cells

(H4, SW1088, and A172) increase invasion capacity, whereas si-

multaneously, have reverse models of RSU‐1 and GDF‐15 expression

(Louca, Gkretsi, et al., 2019). Glioma cells have different behavior

based on cell migration and invasion associated with the relative

RSU‐1 and GDF‐15 expression (Louca, Gkretsi, et al., 2019). Besides,

PINCH1, RhoA, and MMP13 are critical because of their regulation

by the RSU‐1/GDF‐15 interaction to affect the ultimate invasive

phenotype of glioma cells (Louca, Gkretsi, et al., 2019). RSU‐1 as a

focal adhesion (FA) and an ECM adhesion protein regulates the mi-

gratory and invasive effect of glioma cells and is interacted with the

LIM5 domain of the PINCH‐1 at FA regions (Bokel & Brown, 2002;

Donthamsetty et al., 2013; Dougherty et al., 2005; Gkretsi &

Stylianopoulos, 2018; Hoffmann & Schwarz, 2013; Izdebska et al.,

2018; Louca, Gkretsi, et al., 2019). Cell migration and invasion of

glioma cells are regulated by RSU‐1 according to their aggressive-

ness, with RSU‐1 to promote an invasive behavior in aggressive cells

(A172 and U87‐MG) and inhibit them in cells with lower aggres-

siveness (H4 and SW1088) (Louca, Stylianou, et al., 2019). This

suggests the presence of a complex molecular mechanism governing

glioma cell invasion in vitro (Louca, Gkretsi, et al., 2019). Also, a

signal transducer and activator of transcription 3 (STAT3) inhibitor,

BP‐1‐102, upregulated GDF‐15, and fibroblast growth factor 21

(FGF21) mRNA levels in GS6‐22 and GS7‐2 cells (X. Zhang et al.,

2012). Surprisingly, despite the induction of neural genes, like FGF21

and GDF‐15 by STAT3 inhibition, Jmjd3 overexpression or STAT3

inhibition can cause differentiation of the glioblastoma stem cells

(Sherry et al., 2009).

STAT3 is critical in the proliferation and multipotency of the

glioblastoma stem cell (G. H. Li et al., 2010; Sherry et al., 2009).

Inhibiting STAT3 can induce H3K27 demethylation, as well as a

further expression of target genes linked to GBM‐SC neural differ-

entiation (Sherry‐Lynes et al., 2017). It preserves healthy neural and

glioblastoma stem cells in a proliferative and self‐renewing condition

by suppressing the histone demethylase Jmjd3 (Sherry‐Lynes et al.,

2017). STAT3 inhibition was found to be irreversible in GBM‐SC
(Sherry‐Lynes et al., 2017). Isochaihulactone (K8) activates GDF‐15
in glioblastoma (Tsai et al., 2017). K8‐induced GDF‐15 expression

caused 8401 cell apoptosis (Tsai et al., 2017). 8401 and G2T cells

have a high level of PERK, without DDIT3 expression (Tsai et al.,

2017). K8 decreases the glioblastoma cell viability while being ap-

plied in tandem with GSK 2606414. Analysis with western blotting

indicated that GSK 2606414 suppressed PERK expression and

DDIT3 expression was induced by K8 with GSK 2606414 (Tsai et al.,

2017). Increased DDIT3 gene expression was associated with a re-

markable elevation in GDF‐15 gene expression (Tsai et al., 2017).

DDIT3 siRNA was applied for inhibiting DDIT3 gene expression that

decreased GDF‐15 gene expression significantly, by over 40%.

DDIT3 regulates GDF‐15 gene expression (Tsai et al., 2017).

Anti‐GRP 78 drug for blocking the endoplasmic reticulum (ER) stress
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repair system has been produced that induce cancer apoptosis

(Booth et al., 2012; Martin et al., 2013). DDIT3 and GDF‐15 were

upregulated, resulting in tumor cell apoptosis following K8 therapy

(Tsai et al., 2017). DDIT3 regulates GDF‐15 expression in the tran-

scription stage; therefore, DDIT3 can change GDF‐15 mRNA ex-

pression and its stability (Tsai et al., 2017). The ER stress caused the

DDIT3‐regulated cytosolic translocation of human antigen R (HuR),

as well as forming stress granules. The HuR was effective in GDF‐15
gene regulation through the stabilization of the GDF‐15 mRNA in ER

stress. The GDF‐15 expression is regulated in different stages, such

as transcriptional and posttranscriptional stages (S. H. Park et al.,

2012). In the cytoskeleton, K8 suppressed tubulin polymerization

and the related pattern; however, the molecular mechanism has not

yet been clearly recognized (Chen et al., 2006). The DDIT3‐related
apoptosis by the autophagy pathway has been noted recently (B'Chir

et al., 2014). Besides, DDIT3 expression could affect p21, cyclin‐
dependent kinase (CDK1), and CDK2 (Zu et al., 2006).

According to the cancer genome atlas (TCGA) data analysis,

GDF‐15 expression is linked to PD‐L1 in TCGA GBMs. Also, GDF‐15
significantly elevated PD‐L1 expression in U87, U251, and SHG44 GBM

cells, whereas GDF‐15 knockdown decreased PD‐L1 expression in

A172 and GIC6 GBM cells. Accordingly, GDF‐15 is a new regulator for

PD‐L1 in GBM. Malignant glioma is promoted by selecting tumor cells

with a high PD‐L1 level, facilitating immune evasion. Similarly, an in-

crease in PD‐L1 expression level is remarkably associated with a weak

prognosis of GBM (Baral et al., 2014; Y. Liu et al., 2013). Thus, the PD‐1/
PD‐L1 signaling pathway can be targeted and is useful in im-

munotherapy to enhance antitumor immunity and improve the prog-

nosis for GBM cases (Payandeh et al., 2020).

Nonetheless, there is no data on PD‐L1 expression regulation by

GDF‐15. GDF‐15 may enhance PD‐L1 expression by Smad2/3 signaling

in GBM cells, as Smad2/3 inhibition was effective to reduce PD‐L1
expression through GDF‐15 in U87 and U251 cells. Smad2/3 expres-

sion knockdown reduced GDF‐15‐induced PD‐L1 levels in U87 and

U251 cell lines. Accordingly, PD‐L1 expression is partly managed via the

GDF‐15/Smad2/3 pathway in GBMs. Interferon (IFN)‐associated sig-

naling pathway enhanced PD‐L1 expression in glioma (Qian et al., 2018;

Silginer et al., 2017). Nevertheless, there is no correlation between

IFN‐γ and GDF‐15 expression; thus, GDF‐15 affects PD‐L1 regardless

of IFN signaling in GBM. Therefore, GDF‐15 and PD‐L1‐mediated im-

mune evasion of GBM cells are possibly involved in the GBM tumor

progression. In conclusion, GDF‐15 regulates PD‐L1 expression by

activating the Smad2/3 signaling pathway in GBM, which indicates the

potential effectiveness of the blockage of the GDF‐15/PD‐L1 pathway

to treat malignant GBM (Peng et al., 2019; Sadreddini et al., 2019).

8 | GDF‐15 IN IMMUNE ‐EVASION
OF GLIOBLASTOMA

GDF‐15 is involved in the malignant phenotype of glioblastoma

(Albertoni et al., 2002; Codó et al., 2016; Roth et al., 2010; Shnaper

et al., 2009). GDF‐15 is effective in tumor formation by autocrine

regulation of tumor cell development in GDF‐15 sensitive cells (HCT‐
116 cells), as well as the paracrine mechanism of action on the host

cells using cells unresponsive to GDF‐15 (Albertoni et al., 2002).

An increase in the cancer cells’ invasion because of GDF‐15 is

observed in gastric cancers (D. H. Lee et al., 2003).

There are some variations between glioblastomas and their

healthy counterparts’ white matter non‐neoplastic brain tissues.

GDF‐15 showed remarkable diversities between glioblastoma and

non‐neoplastic brain tissue, which is associated with the tumorigenic

process (Scrideli et al., 2008). Upregulation of GDF‐15 is linked to

the abrogation of PTEN, induction of EGFR in primary glioblastoma,

and mutation of TP53, which is seen in secondary glioblastoma

(Behin et al., 2003; J. S. Kim et al., 2007; Kleihues et al., 2002;

Kraemer et al., 2006; Osada et al., 2007). GDF‐15 is involved in cell

tumor mechanisms, and also GDF‐15 is correlated with chemore-

sistance (Corre et al., 2012; Huang et al., 2007; Mimeault et al., 2013;

Proutski et al., 2009; Whiteside et al., 2004). However, Codó et al.

(2016) showed no alteration in glioma cells’ vulnerability against the

alkylating agent or irradiation. In addition, GDF‐15 overexpression

was correlated with radioresistant subclones of nasopharyngeal

cancer cells (Chang et al., 2007).

GDF‐15 has a tumor inhibitory effect (Kadowaki et al., 2012). It

has been shown that GDF‐15 suppresses tumor development in nude

mice in xenograft models (Albertoni et al., 2002). GDF‐15 expression

shows downregulation in over 90% of the tumors. Nonetheless, hy-

permethylation at the −118 to −53 sites has not been noted in all

human glioblastoma specimens (Kadowaki et al., 2012; Stone et al.,

2004). GDF‐15 has a lower expression level in glioblastoma cells

compared with benign glioma cells and healthy human astrocytes

(Kadowaki et al., 2012). GDF‐15 expression causes glioblastoma cell

death and suppresses glioblastoma cell development on soft agar

(Kadowaki et al., 2012; Yoshioka et al., 2008). GDF‐15 over-

expression in human glioblastoma LN‐Z308 cells prevents tumor

development in nude mice in xenograft models (Albertoni et al.,

2002). On the contrary, GDF‐15 enhances the proliferation of glio-

blastoma cells in murine SMA‐560 glioblastoma cells, and GDF‐15
depletion can delay these cells’ development in syngeneic mice (Roth

et al., 2010). There is a relationship between increased levels of GDF‐
15 in CSF of patients and GBM and short‐term survival (Shnaper

et al., 2009). The increased GDF‐15 levels more reflect the late‐stage
tumor growth rather than being a force for tumor growth (Wang

et al., 2011). Therefore, GDF‐15 possibly is a tumor suppressor in the

early phases of tumor growth (Wang et al., 2013). GDF‐15 expres-

sion is upregulated through different tumor suppressor pathways,

such as p53, GSK‐3b, and EGR‐1 (Wang et al., 2013).

Cells with stemness properties derived from different solid tu-

mors, melanoma, and GBM have been shown to release GDF‐15 as

an immunosuppressive cytokine that can protect the tumor micro-

environment from effector immune cells (Yoshimura & Muto, 2011).

According to Roth et al. (2010), GDF‐15 inhibition in a mouse glioma

cell promoted a decrease in cell proliferation and an elevation in the

immune reaction. The proliferation of glioma cells resulted from the

deletion of GDF‐15 was reversed by adding recombinant GDF‐15
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and by FCS, which indicated that in a complete medium, the absence

of GDF‐15 can be counterbalanced via a multitude of growth factors

(Roth et al., 2010). However, immunologic investigations clearly

noted a new and still unidentified effect of GDF‐15 to act as a

glioma‐derived immunosuppressive molecule (Roth et al., 2010). The

depletion of GDF‐15 in glioma cells showed a higher susceptibility to

the natural killer cells’ lytic activity.

The improved immune cell activation without GDF‐15 has been

approved by an elevation in lymphocyte‐derived interleukin (IL)‐2
and a reduction in IL‐10 levels in coculture research. Therefore,

anti‐GDF‐15 methods may in part relieve glioma‐related im-

munosuppression and cause effective antitumor reactions in vitro

(Roth et al., 2010). In syngeneic mice, subcutaneous‐injected SMA‐
560 control cells showed a faster growth compared with SMA‐560
shGDF‐15 transfectants. In this regard, mice with intracranial tumors

were found with longer survival derived from shGDF‐15 cells. GDF‐
15 ectopic overexpression results in unphysiologically high cytokine

concentrations affecting angiogenesis (Ferrari et al., 2005). The hy-

pothesized immunomodulatory effect of GDF‐15 can be confirmed

when GDF‐15‐depleted tumors have higher infiltration with T cells

and macrophages. Infiltration with regulatory T cells or the existence

of tumor‐associated macrophages has a relationship with no favor-

able outcome in other tumors (Curiel, 2008; Lewis & Pollard, 2006;

Roth et al., 2010). Nonetheless, regarding brain tumors, regulatory

T cells are prognostically neutral within the glioblastomas

(Heimberger et al., 2008). Also, there is no association between the

total tumor‐infiltrating macrophages numbers and prognosis (Okada

et al., 2009), while a (rare) severe lymphocytic infiltration is asso-

ciated with remarkably longer survival (Palma et al., 1978). The T‐cell
infiltration magnitude has an inverse correlation with intratumoral

TGF‐β2 levels, as well as a positive correlation with clinical outcome

(Liau et al., 2005) that is consistent with our results regarding the

divergent TGF‐β superfamily member GDF‐15. The death of mice

with GDF‐15‐depleted tumors has been reported suggesting the lack

of GDF‐15 compensated by other immune‐inhibitory strategies, like

TGF‐β. Besides, there may be a selection process for glioma cell

clones with a lower rate of significant GDF‐15 expression

knockdown; however, this hypothesis has not yet been tested.

Overall GDF‐15 provides the immune advantage to malignant

gliomas, being responsible for the malignant phenotype of these

cells, and consequently representing a new and potential target for

future therapeutic methods (Roth et al., 2010).

Glioma cancer stem cells (gCSCs) are responsible to convert

monocytes to an immunosuppressive macrophages/microglia (M2)

phenotype using several factors (Wu et al., 2010). They release such

factors and the gCSC‐conditioned medium can elevate monocyte

migration, which indicates that the gCSCs use monocytes into the

tumor microenvironment (Wu et al., 2010). In Wei et al. (2010) study,

they generated a high level of GDF‐15 that was lost after differ-

entiation. Also, GDF‐15 induces STAT3 in neurons and the GDF‐15
imposes immunosuppressive activities on macrophages (Bootcov

et al., 1997; Johnen et al., 2007). GDF‐15 inhibits phagocytosis and

upregulates IL‐10 and TGF‐β1. Nonetheless, GDF‐15 cannot

significantly enhance phospho‐STAT3 (p‐STAT3) in macrophages and

down‐modulate the costimulatory molecules or cause the macro-

phage's capability for inhibiting T‐cell proliferation (Wu et al., 2010).

Physiological doses of GDF‐15 induce IL‐10 and TGF‐β1, but induc-
tion of these molecules in lower doses of GDF‐15 indicates that

GDF‐15 is not the only factor for M2 polarization. Accordingly,

a complex interaction is available between the gCSCs and macro-

phages involving STAT3‐dependent and STAT3‐independent pro-

cesses. Overall, there is not a certain association between GDF‐15
and other gCSC‐secreted compounds that control the M2 polariza-

tion, but p‐STAT3 alone is not the only contributor in gCSC‐mediated

immune suppression, whereas p‐STAT3‐independent methods of

immune suppression are also involved. For instance, GDF‐15‐
mediated suppression of macrophages is not fully involved in

p‐STAT3 activation. Thus, other main transcriptional hubs, such as

p‐STAT3 playing a role to mediate different downstream immune‐
modulatory pathways should be identified for properly formulating

therapeutic immune methods (Wu et al., 2010). GDF‐15 is a crucial

immunosuppressive cytokine in gliomas and other pathological

situations (Kempf et al., 2011; Roth et al., 2010; Wu et al., 2010;

Z. Zhou et al., 2013). GDF‐15 pathways in GBM cells are shown

in Figure 1.

9 | GDF ‐15 AND MIGRATION
PROMOTION AND INVASION
OF GLIOMA CELLS

Codó et al. (2016) have demonstrated that GDF‐15 is involved in the

control of cell migration and invasiveness. Promoting glioma cells’

migration and invasion using the autocrine GDF‐15 signaling path-

way is involved in the malignant phenotype of these tumors (Codó

et al., 2016). GDF‐15 expression is done differently in the proneural,

neural, classical, and mesenchymal subtypes (Codó et al., 2016;

Verhaak et al., 2010). The highest GDF‐15 concentrations have been

identified in the mesenchymal subgroup that possibly reacts well

against different immunotherapeutic methods under development

(Codó et al., 2016; Doucette et al., 2013; Weiss et al., 2015). In Codó

et al. (2016) study, patients with tumors with the lowest GDF‐15
level, regardless of their subtype classification and expression levels,

had prolonged survival. Assessing different immunotherapeutic

strategies that are currently under investigation in GBM cases

indicated that the autocrine and paracrine activities of GDF‐15
are a promising target for novel therapeutic approaches (Codó

et al., 2016).

Mechanical forces with development in the tumor micro-

environment and matrix hardness have been found as biomechanical

dysfunctions that occurred in the tumor microenvironment and can

influence tumor progression (Gilkes & Wirtz, 2017; Kalli &

Stylianopoulos, 2018; Nia et al., 2016). Mechanical compression

using for brain cancer cells is capable of activating the MEK1/Erk1

pathway by activating EGFR/Ras/Raf, as upstream of MEK1. MEK1/

Erk1 can then regulate many migration‐associated genes’ expression,
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F IGURE 1 GDF‐15 pathways in GBM cells. Akt, protein kinase B; DDITT3, DNA damage‐inducible transcript 3; EGF, epidermal growth
factor; ER, endoplasmic reticulum; GBM, glioblastoma multiforme; GDF‐15, growth differentiation factor 15; GFRAL, glial‐derived neurotrophic
factor family receptor α‐like; MEK, mitogenic‐activated protein kinase; PI3K, phosphoinositide 3‐kinase; PPARγ, peroxisome proliferator‐
activated γ; Raf, rapidly accelerated fibrosarcoma; Ras, Rat sarcoma virus; SP1, specificity protein 1
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such as GDF‐15 for reorganizing the actin cytoskeleton with dis-

rupted compression that finally can facilitate cell migration. GDF‐15
binds to its receptor via a negative feedback loop, suppressing

MEK1/Erk1 activation for regulating its levels in compressed cells.

Mechanical compression that is less effective in the highly aggressive

cells results in a potential tumor‐suppressing pathway for preventing

the compression‐related MEK1/ERK1‐mediated migratory effect.

There are several unanswered questions on the whole mechanism

associated with compression‐related brain tumor progression; for

example, if Erk1 is capable of directly regulating GDF‐15 expression,

how precisely the small GTPases can be regulated using compressive

stress, and the exact GDF‐15 function in brain cancer cell migration

and reorganization cytoskeleton of undergoing compression, because

first research that connected compression‐related migratory profile

of brain cancer cells to MEK1/Erk1 activation, small GTPases, and

GDF‐15 expression regulation, described these factors as possible

targets to be used in future antimetastatic therapeutic strategies for

treating brain tumors (Kalli et al., 2019).

10 | CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

Preclinical data indicate that GDF‐15 is a therapeutic target for

glioblastoma. Although the efficacy and safety of GDF‐15 in humans

remain unclear, understanding the biological function and physiolo-

gical processes of GDF‐15 to develop and progress the cancer is a

key subject to elucidate its beneficial effects. In addition, receptor

binding alteration and assessing downstream signaling pathways

might be determined in the early and late stages of cancer. However,

additional investigations are necessary to find complications of

GDF‐15 on GBM and confirm its therapeutic efficacy and safety.

Considering the controversial evidence of GDF‐15 in tumorigenesis

is needed, as well.
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